Archive for the Prepress Category

Robert Howard (1923–2014): Dot matrix printer & direct imaging press

Posted in Color Printing, Digital Printing, People in Media History, Prepress, Print Media with tags , , , , , , , , , , , , , , , , , , , on October 31, 2016 by multimediaman
Robert Howard: May 19, 1923–December 19, 2014

Robert Howard:
May 19, 1923–December 19, 2014

Apple recently removed the headphone jack from the iPhone 7. Owners of the new model are required to use wireless Bluetooth audio or the Lightning port—the only connector on the phone that also charges the battery—for wired headphones. If the headphone jack is a must, owners can purchase the Lighting-to-3.5mm audio adapter separately for $9.

The missing headphone jack has upset some Apple customers. At the iPhone 7 launch, marketing chief Phil Schiller drove home the company’s reasoning, “Maintaining an ancient, single-purpose, analog, big connector doesn’t make sense because that space is at a premium.” As some tech journalists have pointed out, Apple’s decision comes down to one word: progress.

Analog 3.5mm and ¼” audio connectors

Analog 3.5mm and ¼” audio connectors

Actually, the 3.5mm headphone jack is based on technology that is more than one hundred twenty-five years old. It is a miniaturized version of the phone connector originally developed in the late 1870s for operators to manually connect telephone calls by plugging cords into a switchboard.

The 3.5mm format was created in the 1950s for the transistor radio earpiece and was modified in the 1960s for the Sony portable FM radio and again in 1979 for the Sony Walkman. The fact is that the analog headphone jack has been an anachronism since compact disks and other digital technologies like optical audio became available more than thirty years ago.

As with many earlier decisions by Apple—like eliminating floppy disk and CD-DVD drives, replacing parallel ports with USB ports and adopting Wi-Fi and Bluetooth wireless—the abandonment of the headphone jack, although disruptive, will allow the next generation of technology to develop and flourish.

Centronics interface

The Centronics connectors (25-pin and 36-pin) were dominant in computer peripheral technology for nearly thirty years beginning in 1970

The Centronics connectors (25-pin and 36-pin) were dominant in computer peripheral technology for nearly thirty years beginning in 1970

Interfaces and standards for connecting things together is an important part of electronics and computer history. The adoption of a new format, design or methodology over earlier ones—like USB for SCSI or Thunderbolt for FireWire—is complex and involves a mix of science, engineering, economics and a bit of good luck. In some cases, innovation can fill a void and be embraced rapidly if the cost of adoption is affordable. In other instances, persistent obsolescence can override innovation due to design weaknesses or ease-of-use considerations.

dr-an-wang

Dr. An Wang of Wang Laboratories

Robert Howard—a prolific inventor for seven decades beginning in the 1940s—was among the first engineers to understand that open technology standards were needed to connect computer equipment together. In the late 1960s, along with Dr. An Wang and Prentice Robinson at Wang Laboratories, Howard developed the 36-pin Centronics parallel interface to connect the Centronics Model 101 dot matrix printer to computers.

Although the Wang Labs team could not have predicted it, the Centronics connector took off and became one of the most successful computer connection technologies ever made. One reason for its success was the performance advantages over previous serial interfaces: parallel could carry multiple data streams between devices and could also simultaneously transmit status information.

More fundamentally, however, was the fact that the computer industry in the 1960s was going through a transition. Prior to the Centronics interface, each computer manufacturer used proprietary solutions designed to block customers from buying equipment from competitors. As the computer peripheral business expanded rapidly, however, the lack of standardized connection methods had become a barrier to progress.

As described by Robert Howard in his autobiography Connecting the Dots, the Centronics parallel port was the beginning of a shift in business philosophy among computer companies: “We came to the conclusion that if we developed a very easy, simple interface and gave it free to the world, it might be accepted and used by everyone. Apparently, the practice of creating unique interfaces was so resented by everyone in the computer industry that once IBM accepted our interface, seven other major companies immediately followed suit.” This was not the first or last major technical accomplishment associated with Robert Howard.

Robert Howard’s youth

robert-with-his-father-samuel-horowitz-howard-in-1931

Young Robert with his father Samuel Horowitz (Howard) in 1931

Robert Howard was born Robert Emanuel Horowitz in the Brownsville section of Brooklyn, New York to Samuel and Gertrude (Greenspoon) Horowitz on May 19, 1923. Robert’s father worked the midnight shift at the Main US Post Office in New York City. Although he was born three months premature and was afflicted with dyslexia, Robert grew into a very likeable and stout youngster with athletic talent in several sports.

After the family moved to Flatbush, Brooklyn, Robert spent much of his spare time at the Brooklyn Ice Palace where he learned to skate. He played youth hockey and his skills on the ice were noticed by the hockey coach at Brooklyn Technical High School, an elite all-boys public school. Despite his marginal grades, Robert was recruited to attend Brooklyn Tech as along as that he promised to improve his studies.

While at Brooklyn Tech, Robert excelled at machine shop and woodworking. He built a model airplane out of balsa wood and tissue paper and a refurbished gas engine as a school project. His 1937 delta-wing design was ahead of its time and he received an award for it.

Robert was very close to his maternal grandfather, Isaac Greenspoon, who immigrated to the US from Odessa, Russia in 1910. Isaac started a window-shade business on Manhattan’s Lower East Side that became very successful. Robert worked at his grandfather’s company as a teenager and acquired business skills and decision making that would later prove to be a critical part of his own success.

Although no one, including family members, expected Robert to graduate, he not only received his high school diploma but was awarded an athletic scholarship to attend the college of engineering at Columbia University. By the time of his graduation from Brooklyn Tech, World War II was well underway and the Horowitz’s changed their name to “Howard” to avoid the anti-Semitism that was on the rise during that period.

Before attending Columbia, Robert took a summer job working the night shift for the Sperry Gyroscope Company in Brooklyn. He was hired to operate the milling and cutting machines used to produce parts for US military searchlights. He kept the job when college classes started so he could cover his living expenses.

In a stroke of good fortune, Robert was hired as an engineer for a new vacuum tube project at Sperry. Although he was still a student and did not have an engineering degree, the new position required the machine-shop skills that he did have. Robert switched to night school and threw himself into the vacuum tube development program. This was his first experience with electronics and, like so many other innovators of his generation, the field soon became a focus of his work and he stick with it until the end of his career.

Howard’s early inventions

Robert Howard’s sons Larry and Richard with a Howard Television set in 1959

Robert Howard’s sons Larry and Richard with a Howard Television set in 1959

After a brief stint in the army, Robert was hired as an engineer at Sylvania Electric Company in Queens, New York. Starting at the age of twenty, he became involved in a seemingly endless series of projects in a wide variety of pursuits that would establish him as a pioneer of post-war electronics innovation. His accomplishments would include the founding of at least twenty-four different companies and the development of dozens of state-of-the-art inventions.

Robert Howard’s inventions are so numerous and varied that it is only possible to review a few of them here:

  • 1947: Rectangular TV tube
    All early television sets had round picture tubes. This meant that the rectangular broadcast image was either clipped the top and bottom or was reduced in size to fit in the 7, 10, 11 or 14-inch standard diameters of the first TV tubes. While working for Sylvania, Robert Howard proposed a rectangular tube design and convinced the company to manufacture one hundred of these 16-inch television CRTs.
  • 1950: Cable television
    After founding Howard Television, Inc. to build and sell his own design for black and white TVs, Robert secured a contract to create the first cable TV system that was designed as part of the newly constructed Windsor Park apartment complex in the Bayside section of Queens, New York. Later known as the master antenna television system (MATS), the project connected 18 buildings with a total 320 apartments via coaxial cable to a single television antenna with a signal booster and splitter that enhanced the reception for seven TV channels from the New York area.
  • 1961: Improvements in vinyl record production
    Right around the time that the recording industry was transitioning from 78s to LPs, Robert was collaborating with a company that made the machines that pressed vinyl records. He helped to improve the quality of the mass-produced records by introducing zinc plates into the process. He also invented a pressurized steam-based system for controlling the temperature of the molten vinyl as it was extruded into the record press. Known as the “The Boomer,” Robert Howard’s invention significantly increased the volume of phonograph record production while maintaining the highest stereo quality.
  • 1968: Casino computer system
    As a division of Wang Laboratories, Robert Howard founded Centronics to build the first computerized system to prevent skimming at casino gaming tables. Robert’s system tracked the relationship between the amount of cash coming in versus the value of chips going out. The computerized register centrally tracked the amount of each transaction, each table number and each dealer at any time during the day.

Contributions to printing

Robert Howard’s work with the casino industry led to plans for a printing device that could produce multiple hard copy records of gaming transactions. The available technologies of that time were either too expensive and large or too small and slow for this purpose. Working with Dr. Wang at Centronics on a new computer printing device, Robert’s curiosity and sense of entrepreneurship put him on a path toward innovations that helped bring the printing industry into the digital age.

Model 101 Centronics Dot Matrix Printer

Model 101 Centronics Dot Matrix Printer

  • 1970: Dot matrix printer
    Electronic impact printers with ink-soaked cloth ribbons like typewriters had been developed by IBM in the 1950s for printing from mainframe computers. These machines used a chain with a complete set of characters passing horizontally across the paper at high speed. As the paper moved vertically line-by-line, type hammers struck from behind and drove the accordion folded, tractor-fed paper against the ribbon and type characters on the chain. The IBM line printers had the speed that Robert needed but they cost about $25,000 and were the size of a large piece of office furniture.

    While at Wang Labs, Robert developed a self-contained impact print-head could be made to produce type characters on paper from a matrix of one hundred dots. His invention used wires or “pins” that could print up to 185 characters per second and hit the ribbon and paper hard enough to print all four copies of a multi-part form. The core technology of his invention was an electromagnetic switch that could make each pin strike the printing surface one thousand times per second, more than enough to satisfy the performance required for the gaming reports, and at a cost that was affordable.

    Following the formation of an independent partnership with the Japan-based Brother Industries, Robert Howard’s dot matrix technology was deployed in the Model 101 Centronics printer. Although there were competing dot matrix devices on the market, Centronics became the most successful mass production printer of the early computer industry. By the mid-1970s, sales grew exponentially and reached tens of thousands of units internationally. It was the popularity of the printer that made the above-mentioned Centronics interface into an industry standard for connecting peripherals to computers that lasted for decades until it was replaced by the Universal Serial Bus (USB) in the 1990s.

  • 1991: Direct imaging press

    Prototype of the Heidelberg Quickmaster DI press that was designed with integrated Presstek direct imaging technology

    Prototype of the Heidelberg Quickmaster DI press that was designed with integrated Presstek direct imaging technology

    Robert Howard made what is certainly his most enduring contribution to the printing industry toward the end of his career. In 1986, he founded Presstek to develop the first ever direct imaging offset printing technology. As he explained in his autobiography, “The problem at that time was that offset color was a slow, costly process. It took at least ten days to two weeks of what was called ‘prepress’ preparation before a color print job could even be put on a printing press, and because of this expense, it was both impractical and costly to print less than 10,000 copies of anything. I wanted to apply our knowledge of computers and imaging to the color printing business.”

    Robert’s breakthrough concept was to image the printing plates on the press itself and eliminate the darkrooms, film and chemistry associated with prepress processes. By 1991, a Presstek laser imaging system was added to a Heidelberg offset printing press and sold as the Heidelberg GTO DI (for direct imaging). At the center of the Presstek system was a set of four-color thermal laser heads that imaged plates on press. Aside from the novelty of the on-press plate imaging, the Presstek technology was waterless and was easily retrofitted onto the existing Heidelberg GTO design because it took the place of the unneeded dampening system.

    Beginning in 1993, Presstek and Heidelberg developed the Quickmaster DI press, a printing system that was designed from scratch with the on-press laser imaging technology. Launched at DRUPA in 1995, the Quickmaster DI became one of the most popular Heidelberg offset presses ever with 5,000 machines sold within the decade. The press included design innovations that made it easier to operate than previous offset systems. With this innovation, Robert Howard invented a technology that was both disruptive to the prepress industry and also enabled former prepress companies to enter the short-run color printing market.

Robert Howard died on December 19, 2014 at the age of 91. Although he is not a well-known figure in the history of printing—perhaps because of the variety of businesses and disciplines where he left his mark—Robert made critical contributions to the industry, especially in the final decades of the twentieth century. His exceptional talents as an engineer and entrepreneur were essential to the transition of offset printing from an exclusively analog process to one that uses a host of integrated digital technologies.

Efraim “Efi” Arazi (1937–2013): Color electronic prepress systems

Posted in Business systems, People in Media History, Prepress, Print Media with tags , , , , , , , , , , on July 31, 2015 by multimediaman
Efraim “Efi” Arazi: April 14, 1937 – April 14, 2013

Efraim “Efi” Arazi: April 14, 1937 – April 14, 2013

One of the most important achievements of personal computers and mobile wireless technologies is that they have made it possible for the general public to do things that could previously be done only by professionals.

Take video for example: according to YouTube statistics, 300 hours of digital video is uploaded every minute of every day by people all over the world. This remarkable volume of video is being generated because just about anyone can record, edit and upload a high-definition movie from their smartphone. According to a recent Pew Research study, about one third of online adults (ages 18-50) had posted digital video to a website by 2013.

It is easy to take for granted the video production functions that are performed routinely today on inexpensive and easy to use mobile devices. Less than ten years ago, the ability to capture and edit HD video would have cost tens of thousands of dollars in digital camera and production equipment and required extensive training to use it.

The same can be said for the ability to quickly create a document in a word processing program and insert high resolution graphics anywhere on the page, cropping and scaling as needed. Applying filters and adjusting image quality (contrast, brightness, sharpness) is also second nature as these functions are today available on every mobile device.

CEPS

Four decades ago, before the personal computer existed, electronic image editing, scaling and cropping could only be performed on very expensive prepress systems that cost more than $1 million. That was during the era of what was known as color electronic prepress systems (CEPS) that were built on state-of-the-art minicomputers with reel-to-reel magnetic tape for data storage.

Arazi making a presentation of the Scitex  CEPS equipment in 1979

Arazi making a presentation of the Scitex CEPS equipment in 1979

During the 1960s and 1970s, as commercial offset lithography and film-based color reproduction were overtaking letterpress and single color work, high-end digital electronic production systems were acquired by the big printing companies and major publishers that could afford the investment.

By the 1960s—after analog electronic systems had been widely adopted in pressrooms and prepress and typesetting departments across both Europe and America—a race was on to develop a fully computerized page composing system. Companies like Hell, Crosfield, Dai Nippon Screen and other companies that had been part of the post-war electronics revolution jumped into the market to try and solve the problem of merging text and color photographs together electronically on a computer display.

However, it was a newcomer to the graphic arts industry from Israel called Scitex, founded by Efraim “Efi” Arazi in 1968, that made the highly anticipated breakthrough. Foreshadowing the impact of PC-based desktop publishing on graphic communications in the late 1980s, Scitex introduced digital files and computerization to the prepress production process and forever changed the printing industry.

Scitex

Efi Arazi (born in Jerusalem on April 14, 1937) entered the Israeli military when he was 16 and without graduating from high school. He made a name for himself as an exceptional electronics specialist while working on radar systems in the Israeli air force. Following his military service, with the assistance of the US embassy Arazi was admitted to the Massachusetts Institute of Technology in 1958 as an “extraordinary case” despite his lack of the normally requisite secondary school diploma.

While attending MIT, Arazi also worked at Harvard University’s observatory and digital photography lab. Under the direction of Harvard Professor Mario Grossi, Arazi petitioned NASA and was awarded funds to develop a camera system for scanning the surface of the moon on the unmanned lunar probes in 1966 and 1967. It has also been reported that Arazi’s invention was part of the equipment on the Apollo 11 mission that captured and transmitted video of Neil Armstrong’s first footsteps on the Moon on July 20, 1969.

After earning a bachelor degree in engineering at MIT, Arazi worked in the US for a short time for Itek corporation, a US defense contractor that specialized in spy satellite imagery. In 1967 he returned to Israel and one year later—along with several others who had been educated in the US—founded Scientific Technologies (later shortened to Scitex) with the aim of developing electro-optical devices for commercial purposes.

The Scitex Response 80 system and an example of a stitching designs from it

The Scitex Response 80 system and an example of a stitching design from it

Scitex’s first products were developed for the textile industry. The company sold nearly one hundred electronic systems that automated the process of creating knitting patterns. Since many colors were used in complex fabric designs such as the popular Jacquard pattern, Arazi and his Scitex team developed a scanner (Chroma-Scan) and image manipulation workstation (Response 80) that programmed electronic double-knit stitching looms.

These optical systems replaced manual and time consuming stitch-by-stitch drawings and punch cards that had been widely used in the textile industry up to that time. Scitex also later devised a system for imaging film for printing on textiles that included overprinting, trapping and repeating patterns.

Response 300

Recognizing the potential for new technologies in the growing international printing and publishing industries, Scitex began development in 1975 of a computerized color prepress system. Arazi stunned the graphic arts industry in the Fall of 1979 when he demonstrated the Response 300 system for the first time at the GEC expo in Milan, Italy.

Response 300 included an integrated color drum scanner, image editing workstation and laser film plotter. Directly challenging the domination of high tech graphic arts equipment by Hell (Germany) and Crosfield (UK), Scitex was the first company in the world to combine color image retouching and page makeup onto a single console.

An early model Scitex Response workstation and console

An early model Scitex Response workstation and console

Prior to the Response 300, the electronic color scanning process was based on an analog transfer of color separation information directly from a drum scanner to the film output device. The innovation of Arazi and Scitex was to place a minicomputer (at that time an HP1000) between the scanner and plotter such that the color separations were captured and stored in digital form. The proprietary image files could then be color corrected, retouched, scaled and cropped on screen prior to final output as film separations.

In describing the significance of the accomplishment, industry historian Andy Tribute later explained, “It allowed you to do in real-time on a terminal the sort of things we do in Photoshop now. … I remember watching Efi do a demo where he had a picture of a person with a Rolex watch on and he changed the date in real time on the Rolex. Today that may seem nothing but back then it blew my mind”

Within one year, Scitex had sold $100 million of the Response systems to printers and publishers. Through the mid-1980s, Arazi led Scitex as it developed a suite of products (Raystar, SmartScanner, Whipser, Prisma and Prismax Superstation to name a few) that brought the latest in minicomputer technologies to high-end prepress workflows. Scitex customers gladly paid the $1 million price tag for the flexibility and time savings that Scitex provided.

DTP & EFI

The first European installation of the Response 200 system for the textile industry in 1975

The first European installation of the Response 200 system for the textile industry in 1975

Scitex remained an innovator throughout the 1980s and 1990s as proprietary technologies and CEPS gave way to desktop publishing, industry standard file formats and PostScript workflows. Scitex was among the first prepress technology companies to embrace the introduction of Macintosh computers into graphic arts production.

In 1988, Scitex partnered with Quark technologies—developer of the most sophisticated desktop publishing software at the time—and made it possible for QuarkXPress users to build compound documents with high resolution full color images to be output for both commercial and publication printing.

In 1985, Arazi pushed the industry forward with the development of Handshake, a Scitex product that allowed a wide variety of systems including those of competitors to send and receive data from the Response line of products. Later Scitex was an advocate of Digital Data Exchange Standards along with Hell, Crosfield, Eikonix and others to smooth that transfer of data between all systems in the industry.

In June 1988, Arazi stepped down as President and CEO of Scitex. Six months later, when Mirror Group’s Robert Maxwell acquired a controlling stake in Scitex, Efi Arazi also resigned as chairman of the board. While the company had reached the height of its success with revenues approaching $1 billion and 4,000 employees, Arazi knew that personal computers were transforming the industry and it was time to move on to other business ventures.

After Arazi’s departure, Scitex continued to develop prepress workflow systems, laser imaging equipment, desktop scanners, digital color and soft proofing devices. The company participated in the transition from film-based workflows to the direct-to-plate revolution of the mid-1990s.

Along with all of its competitors, Scitex began to struggle financially and ended up selling its graphic arts group to Vancouver-based competitor Creo Products in 2000. The division of the company that went into digital printing called Scitex Vision was acquired along with the Scitex name by HP in 2005. The remainder of the business was renamed Scailex at that time.

In 1988 Efi Arazi founded Electronics for Imaging (EFI) at the age of 51. The new venture was no less successful then Scitex as EFI raster image processors were integrated in many high quality color laser and toner based printing devices. The EFI Fiery technology quickly became a standard in the graphic arts industry by the 1990s for low cost, high quality color proofs. The company—which bears the first name of its founder as an acronym—later expanded into ink jet printing devices, printing industry productivity software and print server and workflow software tools. Today EFI is one of the most important and successful technology companies in the rapidly changing printing industry. Efraim Arazi died on April 14, 2013 at age 76.