Archive for the Print Media Category

Robert Howard (1923–2014): Dot matrix printer & direct imaging press

Posted in Color Printing, Digital Printing, People in Media History, Prepress, Print Media with tags , , , , , , , , , , , , , , , , , , , on October 31, 2016 by multimediaman
Robert Howard: May 19, 1923–December 19, 2014

Robert Howard:
May 19, 1923–December 19, 2014

Apple recently removed the headphone jack from the iPhone 7. Owners of the new model are required to use wireless Bluetooth audio or the Lightning port—the only connector on the phone that also charges the battery—for wired headphones. If the headphone jack is a must, owners can purchase the Lighting-to-3.5mm audio adapter separately for $9.

The missing headphone jack has upset some Apple customers. At the iPhone 7 launch, marketing chief Phil Schiller drove home the company’s reasoning, “Maintaining an ancient, single-purpose, analog, big connector doesn’t make sense because that space is at a premium.” As some tech journalists have pointed out, Apple’s decision comes down to one word: progress.

Analog 3.5mm and ¼” audio connectors

Analog 3.5mm and ¼” audio connectors

Actually, the 3.5mm headphone jack is based on technology that is more than one hundred twenty-five years old. It is a miniaturized version of the phone connector originally developed in the late 1870s for operators to manually connect telephone calls by plugging cords into a switchboard.

The 3.5mm format was created in the 1950s for the transistor radio earpiece and was modified in the 1960s for the Sony portable FM radio and again in 1979 for the Sony Walkman. The fact is that the analog headphone jack has been an anachronism since compact disks and other digital technologies like optical audio became available more than thirty years ago.

As with many earlier decisions by Apple—like eliminating floppy disk and CD-DVD drives, replacing parallel ports with USB ports and adopting Wi-Fi and Bluetooth wireless—the abandonment of the headphone jack, although disruptive, will allow the next generation of technology to develop and flourish.

Centronics interface

The Centronics connectors (25-pin and 36-pin) were dominant in computer peripheral technology for nearly thirty years beginning in 1970

The Centronics connectors (25-pin and 36-pin) were dominant in computer peripheral technology for nearly thirty years beginning in 1970

Interfaces and standards for connecting things together is an important part of electronics and computer history. The adoption of a new format, design or methodology over earlier ones—like USB for SCSI or Thunderbolt for FireWire—is complex and involves a mix of science, engineering, economics and a bit of good luck. In some cases, innovation can fill a void and be embraced rapidly if the cost of adoption is affordable. In other instances, persistent obsolescence can override innovation due to design weaknesses or ease-of-use considerations.

dr-an-wang

Dr. An Wang of Wang Laboratories

Robert Howard—a prolific inventor for seven decades beginning in the 1940s—was among the first engineers to understand that open technology standards were needed to connect computer equipment together. In the late 1960s, along with Dr. An Wang and Prentice Robinson at Wang Laboratories, Howard developed the 36-pin Centronics parallel interface to connect the Centronics Model 101 dot matrix printer to computers.

Although the Wang Labs team could not have predicted it, the Centronics connector took off and became one of the most successful computer connection technologies ever made. One reason for its success was the performance advantages over previous serial interfaces: parallel could carry multiple data streams between devices and could also simultaneously transmit status information.

More fundamentally, however, was the fact that the computer industry in the 1960s was going through a transition. Prior to the Centronics interface, each computer manufacturer used proprietary solutions designed to block customers from buying equipment from competitors. As the computer peripheral business expanded rapidly, however, the lack of standardized connection methods had become a barrier to progress.

As described by Robert Howard in his autobiography Connecting the Dots, the Centronics parallel port was the beginning of a shift in business philosophy among computer companies: “We came to the conclusion that if we developed a very easy, simple interface and gave it free to the world, it might be accepted and used by everyone. Apparently, the practice of creating unique interfaces was so resented by everyone in the computer industry that once IBM accepted our interface, seven other major companies immediately followed suit.” This was not the first or last major technical accomplishment associated with Robert Howard.

Robert Howard’s youth

robert-with-his-father-samuel-horowitz-howard-in-1931

Young Robert with his father Samuel Horowitz (Howard) in 1931

Robert Howard was born Robert Emanuel Horowitz in the Brownsville section of Brooklyn, New York to Samuel and Gertrude (Greenspoon) Horowitz on May 19, 1923. Robert’s father worked the midnight shift at the Main US Post Office in New York City. Although he was born three months premature and was afflicted with dyslexia, Robert grew into a very likeable and stout youngster with athletic talent in several sports.

After the family moved to Flatbush, Brooklyn, Robert spent much of his spare time at the Brooklyn Ice Palace where he learned to skate. He played youth hockey and his skills on the ice were noticed by the hockey coach at Brooklyn Technical High School, an elite all-boys public school. Despite his marginal grades, Robert was recruited to attend Brooklyn Tech as along as that he promised to improve his studies.

While at Brooklyn Tech, Robert excelled at machine shop and woodworking. He built a model airplane out of balsa wood and tissue paper and a refurbished gas engine as a school project. His 1937 delta-wing design was ahead of its time and he received an award for it.

Robert was very close to his maternal grandfather, Isaac Greenspoon, who immigrated to the US from Odessa, Russia in 1910. Isaac started a window-shade business on Manhattan’s Lower East Side that became very successful. Robert worked at his grandfather’s company as a teenager and acquired business skills and decision making that would later prove to be a critical part of his own success.

Although no one, including family members, expected Robert to graduate, he not only received his high school diploma but was awarded an athletic scholarship to attend the college of engineering at Columbia University. By the time of his graduation from Brooklyn Tech, World War II was well underway and the Horowitz’s changed their name to “Howard” to avoid the anti-Semitism that was on the rise during that period.

Before attending Columbia, Robert took a summer job working the night shift for the Sperry Gyroscope Company in Brooklyn. He was hired to operate the milling and cutting machines used to produce parts for US military searchlights. He kept the job when college classes started so he could cover his living expenses.

In a stroke of good fortune, Robert was hired as an engineer for a new vacuum tube project at Sperry. Although he was still a student and did not have an engineering degree, the new position required the machine-shop skills that he did have. Robert switched to night school and threw himself into the vacuum tube development program. This was his first experience with electronics and, like so many other innovators of his generation, the field soon became a focus of his work and he stick with it until the end of his career.

Howard’s early inventions

Robert Howard’s sons Larry and Richard with a Howard Television set in 1959

Robert Howard’s sons Larry and Richard with a Howard Television set in 1959

After a brief stint in the army, Robert was hired as an engineer at Sylvania Electric Company in Queens, New York. Starting at the age of twenty, he became involved in a seemingly endless series of projects in a wide variety of pursuits that would establish him as a pioneer of post-war electronics innovation. His accomplishments would include the founding of at least twenty-four different companies and the development of dozens of state-of-the-art inventions.

Robert Howard’s inventions are so numerous and varied that it is only possible to review a few of them here:

  • 1947: Rectangular TV tube
    All early television sets had round picture tubes. This meant that the rectangular broadcast image was either clipped the top and bottom or was reduced in size to fit in the 7, 10, 11 or 14-inch standard diameters of the first TV tubes. While working for Sylvania, Robert Howard proposed a rectangular tube design and convinced the company to manufacture one hundred of these 16-inch television CRTs.
  • 1950: Cable television
    After founding Howard Television, Inc. to build and sell his own design for black and white TVs, Robert secured a contract to create the first cable TV system that was designed as part of the newly constructed Windsor Park apartment complex in the Bayside section of Queens, New York. Later known as the master antenna television system (MATS), the project connected 18 buildings with a total 320 apartments via coaxial cable to a single television antenna with a signal booster and splitter that enhanced the reception for seven TV channels from the New York area.
  • 1961: Improvements in vinyl record production
    Right around the time that the recording industry was transitioning from 78s to LPs, Robert was collaborating with a company that made the machines that pressed vinyl records. He helped to improve the quality of the mass-produced records by introducing zinc plates into the process. He also invented a pressurized steam-based system for controlling the temperature of the molten vinyl as it was extruded into the record press. Known as the “The Boomer,” Robert Howard’s invention significantly increased the volume of phonograph record production while maintaining the highest stereo quality.
  • 1968: Casino computer system
    As a division of Wang Laboratories, Robert Howard founded Centronics to build the first computerized system to prevent skimming at casino gaming tables. Robert’s system tracked the relationship between the amount of cash coming in versus the value of chips going out. The computerized register centrally tracked the amount of each transaction, each table number and each dealer at any time during the day.

Contributions to printing

Robert Howard’s work with the casino industry led to plans for a printing device that could produce multiple hard copy records of gaming transactions. The available technologies of that time were either too expensive and large or too small and slow for this purpose. Working with Dr. Wang at Centronics on a new computer printing device, Robert’s curiosity and sense of entrepreneurship put him on a path toward innovations that helped bring the printing industry into the digital age.

Model 101 Centronics Dot Matrix Printer

Model 101 Centronics Dot Matrix Printer

  • 1970: Dot matrix printer
    Electronic impact printers with ink-soaked cloth ribbons like typewriters had been developed by IBM in the 1950s for printing from mainframe computers. These machines used a chain with a complete set of characters passing horizontally across the paper at high speed. As the paper moved vertically line-by-line, type hammers struck from behind and drove the accordion folded, tractor-fed paper against the ribbon and type characters on the chain. The IBM line printers had the speed that Robert needed but they cost about $25,000 and were the size of a large piece of office furniture.

    While at Wang Labs, Robert developed a self-contained impact print-head could be made to produce type characters on paper from a matrix of one hundred dots. His invention used wires or “pins” that could print up to 185 characters per second and hit the ribbon and paper hard enough to print all four copies of a multi-part form. The core technology of his invention was an electromagnetic switch that could make each pin strike the printing surface one thousand times per second, more than enough to satisfy the performance required for the gaming reports, and at a cost that was affordable.

    Following the formation of an independent partnership with the Japan-based Brother Industries, Robert Howard’s dot matrix technology was deployed in the Model 101 Centronics printer. Although there were competing dot matrix devices on the market, Centronics became the most successful mass production printer of the early computer industry. By the mid-1970s, sales grew exponentially and reached tens of thousands of units internationally. It was the popularity of the printer that made the above-mentioned Centronics interface into an industry standard for connecting peripherals to computers that lasted for decades until it was replaced by the Universal Serial Bus (USB) in the 1990s.

  • 1991: Direct imaging press

    Prototype of the Heidelberg Quickmaster DI press that was designed with integrated Presstek direct imaging technology

    Prototype of the Heidelberg Quickmaster DI press that was designed with integrated Presstek direct imaging technology

    Robert Howard made what is certainly his most enduring contribution to the printing industry toward the end of his career. In 1986, he founded Presstek to develop the first ever direct imaging offset printing technology. As he explained in his autobiography, “The problem at that time was that offset color was a slow, costly process. It took at least ten days to two weeks of what was called ‘prepress’ preparation before a color print job could even be put on a printing press, and because of this expense, it was both impractical and costly to print less than 10,000 copies of anything. I wanted to apply our knowledge of computers and imaging to the color printing business.”

    Robert’s breakthrough concept was to image the printing plates on the press itself and eliminate the darkrooms, film and chemistry associated with prepress processes. By 1991, a Presstek laser imaging system was added to a Heidelberg offset printing press and sold as the Heidelberg GTO DI (for direct imaging). At the center of the Presstek system was a set of four-color thermal laser heads that imaged plates on press. Aside from the novelty of the on-press plate imaging, the Presstek technology was waterless and was easily retrofitted onto the existing Heidelberg GTO design because it took the place of the unneeded dampening system.

    Beginning in 1993, Presstek and Heidelberg developed the Quickmaster DI press, a printing system that was designed from scratch with the on-press laser imaging technology. Launched at DRUPA in 1995, the Quickmaster DI became one of the most popular Heidelberg offset presses ever with 5,000 machines sold within the decade. The press included design innovations that made it easier to operate than previous offset systems. With this innovation, Robert Howard invented a technology that was both disruptive to the prepress industry and also enabled former prepress companies to enter the short-run color printing market.

Robert Howard died on December 19, 2014 at the age of 91. Although he is not a well-known figure in the history of printing—perhaps because of the variety of businesses and disciplines where he left his mark—Robert made critical contributions to the industry, especially in the final decades of the twentieth century. His exceptional talents as an engineer and entrepreneur were essential to the transition of offset printing from an exclusively analog process to one that uses a host of integrated digital technologies.

Advertisements

How the index card launched the information age

Posted in Digital Media, People in Media History, Print Media with tags , , , , , , , , , , , , , , , , , , , , on September 30, 2016 by multimediaman

library-card-catalogOne year ago this month, the final order of library catalog cards was printed by the Online Computer Library Center (OCLC) in Dublin, Ohio. On October 2, 2015, The Columbus Dispatch wrote, “Shortly before 3 p.m. Thursday, an era ended. About a dozen people gathered in a basement workroom to watch as a machine printed the final sheets of library catalog cards to be made …”

The fate of the printed library card, an indispensable indexing tool for more than a century, was inevitable in the age of electronic information and the Internet. It is safe to say that nearly all print with purely informational content—as opposed to items fulfilling a promotional or a packaging function—is surely to be replaced by online alternatives.

Founded in 1967, the OCLC is a global cooperative with 16,000 member libraries. Although it no longer prints library cards, the OCLC continues to fulfill its mission by providing shared lirary resources such as catalog metadata and WorldCat.org, an international online database of library collections.

Speaking about the end of the card catalog era, Skip Prichard the CEO of the OCLC said, “The vast majority of libraries discontinued their use of the printed library catalog card many years ago. … But it is worth noting that these cards served libraries and their patrons well for generations, and they provided an important step in the continuing evolution of libraries and information science.”

The 3 x 5 card

Printed library catalog card

Printed library catalog card

The library catalog card is one form of the popular 3 x 5 index card that served as a filing system for a multitude of purposes for over two hundred years. While many of us have been around long enough to have used or maybe even still use them—for addresses and phone numbers, recipes, flash cards or research paper outlines—we may not be aware of the relationship that index cards have to modern information science.

The original purpose of the index card and its subsequent development represented the early stages of information theory and practice. Additionally, as becomes clear below, without the index card as the first functional system for organizing complex categories, subcategories and cross-references, studies in the natural sciences would have never gotten off the ground.

The index card became the indispensable tool for both organizing and comprehending the expansion of human knowledge at every level. Along with several important intermediary steps, the ideas that began with index cards eventually led to relational databases, document management systems, hyperlinks and the World Wide Web.

Carl Linnaeus and natural science

carl-linnaeus

Carl Linnaeus

The Swedish naturalist and physician Carl Linnaeus (1707–1778) is recognized as the creator of the index card. Linnaeus used the cards to develop his system of organizing and naming the species of all living things. Linnaean taxonomy is based on a hierarchy (kingdom, phylum, class, order, family, genus, species) and binomial species naming (homo erectus, tyrannosaurus rex, etc.). He published the first edition of his universal conventions in a small pamphlet called “The System of Nature” in 1735.

Beginning in his early twenties, Linnaeus was interested in producing a series of books on all known species of plants and animals. At that time, there were so many new species being discovered that Linnaeus knew as soon as a book was printed, a large amount of new information would already be available. He wanted to quickly and accurately revise his publications to take into account the new findings in subsequent editions.

As time went on, Linnaeus developed different functional methods of sorting through and organizing enormous amounts of information connected with his growing collection of plant, animal and shell specimens (eventually it rose to 40,000 samples). His biggest problem was creating a process that was both structured enough to facilitate retrieval of previously collected information and flexible enough to allow rearrangement and addition of new information.

Pages from an early edition of Linnaeus’ “The System of Nature”

Pages from an early edition of Linnaeus’ “The System of Nature”

Working with paper notations in the eighteenth century, he needed a system that would allow the flow of names, references, descriptions and drawings into and out of a fixed sequence for the purposes of comparison and rearrangement. This “packing” and “unpacking” of information was a continuous process that enabled Linnaeus’ research to keep up with the changes in what was known about living species.

Linear vs non-linear methods

At first, Linnaeus used notebooks. This linear method—despite his best efforts to leave pages open for updates and new information—proved to be unworkable and wasteful. As estimates of how much room to allow often proved incorrect, Linnaeus was forced to squeeze new details into ever shrinking available space or he ended up with unutilized blank pages.

After thirty years of working with notebooks, Linnaeus began to experiment with a filing system of information recorded on separate sheets of paper. This was later converted to small sheets of thick paper that could be quickly handled, shuffled through and laid out on a table in two-dimensions like a deck of playing cards. This is how the index card was born.

a-stack-of-linnaeus-index-cards

A stack of Linnaeus’ hand written index cards

Linnaeus’ index card system was able to represent the variation of living organisms by showing multiple affinities in a map-like fashion. In order to accommodate the ever-expanding knowledge of new species—today the database of taxonomy contains 8.7 million items—Linnaeus created a breakthrough method for managing complex information.

Melvil Dewey and DDC

While index cards continued to be used in Europe, an important step forward in information management was made in the US by Melvil Dewey (1851-1931), the creator of the well-known Dewey Decimal System (or Dewey Decimal Classification, DDC). Used by libraries for the cataloging of books since 1876, the DDC was based on index cards and introduced the concepts of “relative location” and “relative index” to bibliography. It also enabled libraries to add books to their collection based on subject categories and an infinite number of decimal expressions known as “call numbers.”

The young Melvil Dewey

The young Melvil Dewey

Previous to the DDC, libraries attempted to assign books to a permanent physical location based on their order of acquisition. This linear approach proved unworkable, especially as library collections grew rapidly in the latter part of the nineteenth century. With industrialization, libraries were overflowing with paper: letters, reports, memos, pamphlets, operation manuals, schedules as well as books were flooding in and the methods of cataloging and storing these collections needed to find a means of keep up.

In the 1870s, while working at Amherst College Library, Melvil Dewey became involved with libraries across the country. He was a founding member of the American Library Association and became editor of the The Library Journal, a trade publication that still exists today. In 1878, Dewey published the first edition of “A Classification and Subject Index for Cataloguing and Arranging the Books and Pamphlets of a Library” that elaborated on the use of the library card catalog index.

Precursor to the information age

Title page of the first edition of Dewey’s bibliographic classification system

Title page of the first edition of Dewey’s bibliographic classification system

Like many others of his generation, Melvil Dewey was committed to scientific management, standardization and the democratic ideal. By the end of the nineteenth century the Dewey classification system and his 3 x 5 card catalog were being used in nearly every school and public library in the US. The basic concept was that any member of society could walk into a library anywhere in the country, go to the card catalog and be able to locate the information they were looking for.

In 1876 Dewey created a company called Library Bureau and began providing card catalog supplies, cabinets and equipment to libraries across the country. Following the enormous success of this business, Dewey expanded the Library Bureau’s information management services to government agencies and large corporations at the turn of the twentieth century.

In 1896, Dewey formed a partnership with Herman Hollerith and the Tabulating Machine Company (TMC) to provide the punch cards used for the electro-mechanical counting system of the US government census operations. Dewey’s relationship with Hollerith is significant as TMC would be renamed International Business Machines (IBM) in 1924 and become an important force in the information age and creator of the first relational database.

Paul Otlet and multidimensional indexing

Paul Otlet working in his office in the 1930s

Paul Otlet working in his office in the 1930s

While Dewey’s classification system became the standard in US libraries, others were working on bibliographic cataloging ideas, especially in Europe. In 1895, the Belgians Paul Otlet (1868-1944) and Henri La Fontaine founded the International Institute of Bibliography (IIB) and began working on something they called the Universal Bibliographic Repertory (UBR), an enormous catalog based on index cards. Funded by the Belgian government, the UBR involved the collection of books, articles, photographs and other documents in order to create a one-of-a-kind international index.

As described by Otlet, the ambition of the UBR was to build “an inventory of all that has been written at all times, in all languages, and on all subjects.” Although they used the DDC as a starting point, Otlet and La Fontaine found limitations in Dewey’s classification system while working on the UBR. Some of the issues were related to Dewey’s American perspective; the DDC lacked some categories needed for information related to other regions of the world.

A section of the Universal Bibliographic Repertory

A section of the Universal Bibliographic Repertory

More fundamentally, however, Otlet and La Fontaine made an important conceptual breakthrough over Dewey’s approach. In particular, they conceived of a complex multidimensional indexing system that would allow for more deeply defined subject categories and cross-referencing of related topics.

Their critique was based on Otlet’s pioneering idea that the content of bibliographic collections needed to be separated from their form and that a “universal” classification system needed to be created that included new media and information sources (magazines, photographs, scientific papers, audio recordings, etc.) and moved away from the exclusive focus on the location of books on library shelves.

Analog information links and search

After Otlet and La Fontaine received permission from Dewey to modify the DDC, they set about creating the Universal Decimal Classification (UDC). The UDC extended Dewey’s cataloging expressions to include symbols (equal sign, plus sign, colon, quotation marks and parenthesis) for the purpose of establishing “links” between multiple topics. This was a very significant breakthrough that reflected the enormous growth of information taking place at the end of the nineteenth century.

By 1900, the UBR had more than 3 million entries on index cards and was supported by more than 300 IIB members from dozens of countries. The project was so successful that Otlet began working on a plan to copy the UBR and distribute it to major cities around the world. However, with no effective method for reproducing the index cards, other than typing them out by hand, this project ran up against the technical limitations of the time.

henri-la-fontaine-with-staff-members-of-the-mundaneum

Henri La Fontaine and staff members at the Mundaneum in Mons, Belgium. At its peak in 1924, the catalog contained 18 million index cards.

In 1910, Otlet and La Fontaine shifted their attention to the establishment of the Mundaneum in Mons, Belgium. Again with government support, the aim of this institution was to bring together all of the world’s knowledge in a single UDC index. They created the gigantic repository as a service where anyone in the world could submit an inquiry on any topic for a fee. This analog search service would provide information back to the requester in the form of index cards copied from the Mundaneum’s bibliographic catalog.

By 1924, the Mundaneum contained 18 million index cards housed in 15,000 catalog drawers. Plagued by financial difficulties and a reduction of support from the Belgian government during the Depression and lead up to World War II, Paul Otlet realized that further management of the card catalog had become impractical. He began to consider more advanced technologies—such as photomechanical recording systems and even ideas for electronic information sharing—to fulfill his vision.

Although the Mundaneum was sacked by the Nazi’s in 1940 and most of the index cards destroyed, the ideas of Paul Otlet anticipated the technologies of the information age that were put into practice after the war. The pioneering work of others—such as Emanuel Goldberg, Vannevar Bush, Douglas Englebart and Ted Nelson—would lead to the creation of the Internet, World Wide Web and search engines in the second half of the twentieth century.

George Baxter (1804–1867): Pictorial color printing

Posted in Color Printing, People in Media History, Print Media with tags , , , , , , , , , , , on July 31, 2016 by multimediaman
George Baxter: July 31, 1804–January 11, 1867

George Baxter: Jul 31, 1804–Jan 11, 1867

Prior to the invention of photography and photomechanical halftones, the printing of pictures required the handwork of skilled artists. For centuries, craftsmen used various manual techniques—engraving, etching, stippling and drawing—to create original images on wood blocks, metal plates or lithographic stones that could be inked and printed onto paper.

At each evolutionary stage—from relief to intaglio to lithography—pictorial printing became incrementally more productive. However, the craftsmen’s work persisted and the process remained slow. Well into the 1800s, it was common for creative work on pictures such as engraved images on text pages or separately printed lithographic plates to begin a year or two before the date of publication.

Although the artistic work was time-consuming, it often produced striking results. By the time color printing methods were perfected, magnificent pictures began to appear. In the mid-nineteenth century, pictorial color printers—some using RBY or RBYK models and others using “tinting” techniques of up to 20 or even 30 different colors—were producing astonishingly beautiful prints.

As the methods advanced and cost per picture declined, the quantity of color printing grew. This expansion was in part due to the industrialization of printing press machinery. The speed and volume of print was being driven up exponentially by metal cylinders, steam power and rotary printing equipment.

The Coronation of Queen Victoria and the Opening of Parliament (1842)

“Her Most Gracious Majesty Receiving the Sacrament at her Coronation” (1841) is among George Baxter’s most famous pictorial work. It includes two hundred identifiable portraits of individuals who were present at the event.

Another side of the surge in color was that more people than ever before had access to the new low-priced prints. For the first time, average people could buy printed copies of paintings and other items previously seen only in the private collections of society’s elite. The color printer became for the people the disseminator of artistic masterpieces and the chronicler of contemporary events.

A few enterprising printers recognized that industrial society had created an opportunity to produce and sell pictures to the general public. They established companies in cities and employed the available labor—including child workers—to print inexpensive color pictures for the growing urban population. In this environment, the Englishman George Baxter emerged as perhaps the most important figure of the era of pictorial color printing.

George Baxter’s innovation

In some respects, the color work of George Baxter should be considered Victorian-age fine art. Even though he produced upwards of 20 million prints during his lifetime, Baxter’s work exhibits virtuosity in the technical aspects of platemaking and printing as well as extraordinary gifts as an engraver.

It would take many decades after his death for the meaning of Baxter’s accomplishments to be fully appreciated. As C.T. Courtney Lewis explained in George Baxter, Color Printer, His Life and Work in 1908, “His genius was not unrecognized in his own day; yet it seems that it is only now that the hour of his complete triumph has sounded … he was not a printer merely: he was an artist, a pioneer, and a man of many and versatile talents.”

The innovation for which George Baxter is known—and for which he applied for on October 23, 1835 and was granted a patent on April 23, 1836—is a complex one. To produce long press runs of beautiful and economically viability color pictures, Baxter combined two previously existing printing techniques:

  1. Steel or copper plate intaglio printing
  2. Woodblock relief printing

Baxter’s novelty was that the first impression was printed in black or gray ink with an intaglio outline or “key plate” and then subsequent multiple layers of color tinting were printed with relief woodblocks. His convergence of intaglio and relief printing produced pictures that were significantly superior to anything printed with either process independently of one another.

An early example of Baxter’s color printing innovation, “Evening on the sea” (1835), is the frontispiece of Robert Mudie’s book “The Sea”

An early example of Baxter’s color printing innovation, “Evening on the sea” (1835), is the frontispiece of Robert Mudie’s book “The Sea”

As Baxter himself explained in his patent application, “My invention consists in colouring such impressions of steel and copper plate engravings and lithographic and zincographic printing by means of block printing in place of colouring such impressions by hand as heretofore practised, and which is an expensive process; and by such a process producing coloured impressions of a high degree of perfection and far superior in appearance to those which are coloured by hand and such prints as are obtained by means of block printing in various colours uncombined with copper and steel lithographic or zincographic impressions.”

Prior to Baxter, key plates had been used in the more labor-intensive process of color tinting by hand. In the case of the woodblock method (also known as chromoxylography), it was used previously by others without the preliminary step of the key plate. It is also true that a combination of the two methods had been performed a century earlier by the Englishman Elisha Kirkall, but with nothing approaching the level of Baxter’s perfection or economy.

A decisive aspect of what became known as Baxter’s Process was the remarkably consistent quality of the entire color printing run. This was achieved with tight registration—using four pins or “pointers” in the press to hold the paper in position from one impression to the next—and oil-based inks. The advent of improved brightness of pigments and the permanent quality of the oil-based inks gave Baxter’s prints a superior color fidelity.

Among the first examples of Baxter’s method was the frontispiece of Robert Mudie’s 1835 book The Sea. What may seem today as a subtle change, the picture of a boat at sea during sunset carries a degree of precision and detail that was not achievable prior to Baxter’s two-step process.

Early life

George Baxter was born on July 31, 1804 at Lewes in the southeastern English county of Sussex. This area is known to have been a center of the early English printing and papermaking industries.

George was the second son of John Baxter, the proprietor of a typography, printing and publishing establishment in Lewes. George’s father would gain in his lifetime a reputation as an advanced printer who was the first to test and perfect several early industrial innovations in printing press technology.

George attended Cliffe House Academy and went to high school at St. Ann’s in Lewes. After he finished school, he worked in a book shop in Brighton, a seaside town less than ten miles from home. Later, although the record is unclear, he apprenticed as a wood engraver and lithographer.

By the age of nineteen, George was focusing on the artistic elements of printing rather than the mechanical and he began making a name for himself as a gifted illustrator. By 1826, it is known that George Baxter was in Lewes at his father’s establishment identifying himself as a “wood-engraver.”

At age 23, George migrated to London and set up his own business as an engraver and printer. Six months after starting his enterprise in London, George married Mary Harrild, daughter of Robert Harrild, a printing industry innovator and business partner of John Baxter. The record shows that at this time George Baxter began his experiments with color printing.

Greatest works

Once he had demonstrated to himself—if not also to everyone in the printing business—that his patented process represented an important breakthrough, Baxter started on a path that would continue for the next thirty years. During the period of his first patent grant (1834-1849), Baxter had no competitors in England for the process that he advertised as “Pictorial Colour Printing for Book Illustration and Picture Printing.”

“The Pictorial Album, or Cabinet of Paintings for the Year 1837” included eleven color prints by George Baxter. Some consider this to be among his finest work.

“The Pictorial Album, or Cabinet of Paintings for the Year 1837” included eleven color prints by George Baxter. Some consider this to be among his finest work.

At the end of 1836, Baxter produced a volume called The Pictorial Album, or Cabinet of Paintings that was published by Chapman and Hall. This project—which contained ten pictures including reproductions of several works of well-known artists of the day along with a frontispiece—was the first major publication of Baxter’s process. Some have said it was the high-water mark of his craft.

In 1841, Baxter printed two pictures called “Her Most Gracious Majesty Receiving the Sacrament at Her Coronation” and “The Arrival Her Most Gracious Majesty Queen Victoria at the House of Lords to Open her First Parliament” that include 200 portraits of identifiable guests at the event at Westminster Abbey in 1938. These oil-color prints—which are 21-3/4” by 17-1/2”—were prepared in cooperation with Buckingham Palace and gained Baxter direct access to the Queen and other royals in Britain and elsewhere in Europe.

Confident of the superiority of his methods, George Baxter was not shy about self-promotion as he gained a level of notoriety for his invention. However, as Baxter was continually preoccupied with the artistic and technical aspects of his business, he was never successful financially. In 1849, he petitioned the Privy Council and was granted a five-year extension on his patent on the grounds that he had lost money during the previous fourteen years.

Baxter’s print booth at the Great Exhibition

Baxter’s print booth at the Great Exhibition

In 1851, Baxter prints were on display at The Great Exhibition (also called the Crystal Palace Exhibition) in London. Of his work, the official catalog of the expo said, “Mr. George Baxter, the patentee of the process of printing in oil colours, exhibits in the Fine Art Court, upwards of sixty specimens (from the largest size to the smallest miniature), of his choicest productions … The visitors will indeed be delighted with these charming specimens which form the principal attraction in the Fine Art Court.”

Baxter also exhibited prints at the international expos in New York City in 1852 and Paris in 1855. He was awarded medals for these entries. Later, Baxter produced a series of prints called “Gems of The Great Exhibition” which show the grandeur of his vision and the dexterity of his engraving skills.

Baxter’s series “Gems of the Great Exhibition” (1852) included this image of the exterior of the Crystal Palace in London.

Baxter’s series “Gems of the Great Exhibition” (1852) included this image of the exterior of the Crystal Palace in London.

Legacy

In later years, while still holding his patent, Baxter took to licensing his method to other printers as a means of generating income. Having obtained color printing patents in France, Belgium and Germany as well as Britain, Baxter sold annual licenses to a handful of printers in all of these countries. Some have said that the work of these printers never approached Baxter’s in graceful detail and delicate coloring.

Six years after his process went into the public domain, Baxter liquidated his oil-color printing business and sold off his inventory of prints and intaglio plates and woodblocks to another printer. Part of this arrangement included Baxter’s agreement to provide technical assistance to the new owner.

The reasons for his decision to exit the business are unknown. It is clear that by the 1860s other competing methods such as chromolithography (Engelmann, 1837) and photography (Daguerre, 1839) were challenging the Baxter method in both quality and cost. By 1865, the remainder of Baxter’s printing business went bankrupt.

In late 1866 George Baxter was struck in the head during an accident involving a horse-drawn omnibus. He died at his residence in Sydenham on January 11, 1867 and was buried at Christ Church, Forest Hill in London. A red granite obelisk above his grave bears the inscription “the sole inventor and patentee of oil-colour printing.”

Some believed that Baxter’s significance and contribution had been exaggerated by a cult of enthusiasm built up by clubs and associations organized to collect copies of his works. One such critic, R.M. Burch, wrote of Baxter in 1910, “Had he not been, rediscovered … his name and fame would in all probability have completely passed into the limbo of forgetfulness.”

However, George Baxter is remembered for the lasting impact of his original color printing method and for making color printing popular and viable. Like others before and after him, Baxter’s genius and creative gifts intersected with important changes in the means and methods of printing during his lifetime. It is undeniable that George Baxter played a decisive role in expanding the influence of print upon society during the Victorian era.

The pioneers of color printing

Posted in People in Media History, Print Media, Typography with tags , , , , , , , , , , , , , , , , , on June 30, 2016 by multimediaman

Red Apple Green Leaves Blue Sky

Color is a perception; it is the response of the human visual system to light reflected from objects in the world around us. We learn as children to associate these color perceptions with names: the red of an apple, the green of the leaves or the blue of the sky. More scientifically, color is the way our eyes, optic nerve and brain receive and process different wavelengths of the visible spectrum of electromagnetic radiation.

It took hundreds of years of thought and experiment—beginning with Isaac Newton’s 1672 idea that white light is the source of color sensation—to arrive at the modern understanding of color and the way we perceive it. In 1802, the visible spectrum of electromagnetic energy was defined by Thomas Young when he measured various wavelengths of light and established their relationship to color, i.e. red is about 650 nm, green is about 510 nm and blue is about 475 nm.

Visible Light as a Segment of Electromagic Waves

The visible portion of the electromagnetic spectrum represents all the colors of the rainbow

Later, Young and Hermann von Helmholtz developed the theory of trichromatic color vision. They surmised that the human eye has three types of photoreceptors, each with particular sensitivity to a corresponding range of light waves. In the 1950s it was proved—with advanced measuring equipment—that the three kinds of visual receptors (cones) have the capacity to sense many combinations of light wavelengths and see them as all the colors of the rainbow.

Knowledge of the properties of light and color was a major achievement of the scientific revolution (1500 to 1900) that—alongside the discovery of graphical perspective and other mathematical linear projections—transformed the visual arts. Artists and craftsmen that exclusively relied on their sensibility, talent and experience were able to integrate the principles of science into their works, bringing a degree of realism and accuracy that was previously impossible.

While the history of two-dimensional color representation is most often associated with fine art painting—the fresco, oil and tempera works of the Renaissance masters—the lesser known origins of color printing took a parallel development in time. Starting with the birth of mechanical metal type in Germany during the High Renaissance, a quest was begun to conquer the challenge of practical and high-quality color printing.

Relief color, Fust and Schoeffer (1457)

Page from the Mainz Psalter

A three-color page from the Mainz Psalter printed by Fust and Schoeffer in 1457

There is evidence that Johannes Gutenberg experimented with color during the printing of his famous 42-line Bible. For the most part, however, traditional hand-painted ornamental color lettering was used by Gutenberg alongside the black letter printing type he invented around 1450. Shortly thereafter, relief printing of color type and other ornamental figures was performed remarkably well by Gutenberg’s former collaborators on the printing of the Bible, Johann Fust and Peter Schoeffer.

In 1457, Fust and Schoeffer printed the Mainz Psalter with three colors—black, red and blue—all at one time. Their ingenious technique of compound printing involved interlocking metal type characters that were inked separately and reassembled for a single impression on the printing press. Although it returned extraordinary results, the process was very time consuming and expensive.

Intaglio color, Teyler ( 1680)

Johan Teyler intaglio color print

Johan Teyler intaglio color print

For most of the next two centuries, limited color printing was attempted as hand-colored pages remained the preferred method of pictorial representation. As various printing techniques spread across Europe, new approaches to color reproduction were tested. Some color illustrations were made using wood blocks.

By the mid-fifteenth century, intaglio engraving emerged as the standard method for printing images in black and white. Around 1680, a mathematician and engineer from Nijmegen, Holland named Johan Teyler developed a means of dabbing different colored inks into the wells of intaglio plates—originally intended for black-only printing—to make a full-color impression all at one time. Like Fust and Schoeffer’s work, Teyler’s color results were artistically beautiful but could not be developed into a viable commercial process.

Three-color mezzotint, Le Blon (1720)

Jacob Christoph Le Blon’s three-color mezzotint of 1722

Jacob Christoph Le Blon’s three-color mezzotint of 1722

Following the publication in 1704 of Isaac Newton’s discoveries regarding the physics of light and color—especially the idea that all colors are made of different combinations of red, blue and yellow (this was later proven to be imprecise for both light waves and pigments)—a few printers began working with techniques in three-color mezzotint printing. By this time, mezzotint copperplates were the favored image reproduction method because they rendered tones more easily than engraving.

In 1711, the Frankfurt-born painter Jacob Christoph Le Blon, basing himself directly upon Newton’s theory, mastered trichromatic mezzotint printing in his Amsterdam studio. Le Blon first tried and failed to commercialize his invention in Amsterdam, The Hague and Paris. He relocated in London in 1720, successfully obtained a royal patent from George I for his process and opened up a business selling printed color copies of oil paintings.

While his technical accomplishment was a significant step forward, Le Blon’s business lasted for three years before bankruptcy forced him back to Paris. Creating an appropriate balance of intensity between the primary color plates and maintaining tight registration between the three press impressions upon the paper was an exceedingly difficult and costly trial-and-error process.

Four-color mezzotint, L’Admiral and Gautier (1736)

Test printing of yellow and blue plates of the human skull by L’Admiral (1738) and the four-color mezzotint of the musculature of the head by Gautier (1745)

Test printing of yellow and blue plates of the human skull by L’Admiral (1738) and the four-color mezzotint of the musculature of the head by Gautier (1745)

It is documented that J. C. Le Blon also invented four-color mezzotint printing by adding black to the red, yellow and blue plates on a few of his prints. However, the perfection RYBK (K is for the key color, black) model was made by others, especially following Le Blon’s death in 1741. Among those who contributed were the Dutch engraver and printer Jan L’Admiral and the French painter Jacques Gautier, who had both been assistants to Le Blon. L’Admiral and Gautier initially produced color plates of human anatomy for medical research publications in Paris in the 1730s and 1740s.

In France, Gautier proved to be something of a charlatan and attempted to take full credit for the invention of four-color printing. He started a periodical in 1752 called Observations on natural history, on physics and painting in which popular sensationalism appears to have been his primary objective. Gautier fabricated a full-color image of a “siren” with the body of a seahorse and a hideous head of a human and reproduced some images that bordered on pornography. Nonetheless, Gautier’s journal proved to be among the first financially successful uses of color printing; it was published quarterly for five years.

Chromolithography, Engelmann (1837)

Godefroy Engelmann 1838 chromolithograph copy and the original oil of Master Lambton

Godefroy Engelmann 1838 chromolithograph copy and the original oil of Master Lambton

The invention of lithography by the Bavarian Alois Senefelder in 1796 brought a fundamentally new approach to printing. While relief letter press and intaglio mezzotint were mechanical printing processes, lithography relied upon the chemical antipathy of oil and water to transfer the image onto paper. The new method enabled artists to draw on the surface of limestone instead of the much more difficult etching or engraving of metal plates. In 1818, Senefelder experimented with lithographic color reproduction and pointed the way forward for others.

For the next two decades, lithographers from Germany, France and England made strides with color, for the most part printing decorative ornamentations or title pages of relief printed books. The chromolithography during this time was also a return to a multi-color approach of the seventeenth century as opposed to the later and more advanced three- or four-color mezzotint separation process.

Chromolithography came of age with the work of the French-German Godefroy Engelmann of Mulhouse. After becoming a pioneer and master in monochrome lithography, Engelmann made significant progress with four-color lithographs in 1837. He moved to Paris a year later and obtained a patent for his process. His works proved that chromolithography could effectively render lifelike prints of landscapes, flower and fruit arrangements and the most difficult human forms.

Toward modern color printing

The four-color chromolithography of the mid-nineteenth century finally brought color printing to an economically viable balance of quality, time and cost. However, full color printing was still largely a special process that was performed separately from letterpress black-only text print. With the rapid industrial expansion of book and newspaper publishing, color work remained essentially a very slow, craft-based process that required highly skilled artisans.

The production of relief, intaglio and lithographic “prints” and “plates” remained the convention for color work during the balance of the 1800s. These products were most often sold as single items—sometimes for as little a penny each—or bound into books as illustrations. It would require the development and maturity of three major advancements in the graphic arts to integrate printed color together with black text: color photography by Thomas Sutton (1861) and halftone reproduction by Frederic Ives (1881) and the CMYK ink model (1906).

Initially, some black and white halftones were enhanced with synthetically applied color. By the 1920s, improvements in mechanical color separation techniques and the growth of magazine publishing made it possible for some titles to afford full-color pictures and black text to be printed together on sheetfed letterpress systems. Some of these publications, such as National Geographic Magazine, continued with letterpress color all the way up to the late 1970s.

By the late 1950s, offset lithography and electronic color separations had begun their rise as the foremost method of reproducing high quality, inexpensive printed color images. Although the personal computer (IBM, 1981), digital camera (Fuji, 1987) and digital printing (Indigo, 1993) have brought color reproduction to new levels of high quality and low cost—especially for small quantities—the breakthroughs of seventy years ago remain by far the dominant methods of color reproduction today.

Books, e-books and the e-paper chase

Posted in Digital Media, Mobile, Mobile Media, Paper, Print Media with tags , , , , , , , , , , , , , on March 22, 2016 by multimediaman

Last November Amazon opened its first retail book store in Seattle near the campus of the University of Washington. More than two decades after it pioneered online book sales—and initiated the e-commerce disruption of the retail industry—the $550 billion company seemed to be taking a step backward with its “brick and mortar” Amazon Books.

Amazon Books opened in Seattle on November 3, 2015

Amazon opened its first retail book store in Seattle on November 3, 2015

However, Amazon launched its store concept with a nod to traditional consumer shopping habits, i.e. the ability to “kick the tires.” Amazon knows very well that many customers like to browse the shelves in bookstores and fiddle with electronic gadgets like the Kindle, Fire TV and Echo before they make buying decisions.

So far, the Seattle book store has been successful and Amazon has plans to open more locations. Some unique features of the Amazon.com buying experience have been extended to the book store. Customer star ratings and reviews are posted near book displays; shoppers are encouraged to use the Amazon app and scan bar codes to check prices.

Amazon’s book store initiative was also possibly motivated by the persistence and strength of the print book market. Despite the rapid rise of e-books, print books have shown a resurgence of late. Following a sales decline of 15 million print books in 2013 to just above 500 million units, the past two years have seen an increase to 560 million in 2014 and 570 million in 2015. Meanwhile, the American Booksellers Association reported a substantial increase in independent bookstores over the past five years (1,712 member stores in 2,227 locations in 2015, up from 1,410 in 1,660 locations in 2010).

Print books and e-books

After rising rapidly since 2008, e-book sales have stabilized at between 25% and 30% of total book sales

After rising rapidly since 2008, e-book sales have stabilized at between 25% and 30% of total book sales

The ratio of e-book to print book sales appears to have leveled off at around 1 to 3. This relationship supports recent public perception surveys and learning studies that show the reading experience and information retention properties of print books are superior to that of e-books.

The reasons for the recent uptick in print sales and the slowing of e-book expansion are complex. Changes in the overall economy, adjustments to bookstore inventory from digital print technologies and the acclimation of consumers to the differences between the two media platforms have created a dynamic and rapidly shifting landscape.

As many analysts have insisted, it is difficult to make any hard and fast predictions about future trends of either segment of the book market. However, two things are clear: (1) the printed book will undergo little further evolution and (2) the e-book is headed for rapid and dramatic innovation.

Amazon launched the e-book revolution in 2007 with the first Kindle device. Although digital books were previously available in various computer file formats and media types like CD-ROMs for decades, e-books connected with Amazon’s Kindle took off in popularity beginning in 2008. The most important technical innovation of the Kindle—and a major factor in its success—was the implementation of the e-paper display.

Distinct from backlit LCD displays on most mobile devices and personal computers, e-paper displays are designed to mimic the appearance of ink on paper. Another important difference is that the energy requirements of e-paper devices are significantly lower than LCD-based systems. Even in later models that offer automatic back lighting for low-light reading conditions, e-paper devices will run for weeks on a single charge while most LCD systems require a recharge in less than 24-hours.

Nick Sheridon and Gyricon

The theory behind the Kindle’s ink-on-paper emulation was originated in the 1970s at the Xerox Palo Alto Research Center in California by Nick Sheridon. Sheridon developed his concepts while working to overcome limitations with the displays of the Xerox Alto, the first desktop computer. The early monitors could only be viewed in darkened office environments because of insufficient brightness and contrast.

Nick Sheridon and his team at Xerox PARC invented Gyricon in 1974, a thin layer of transparent plastic composed of bichromal beads that rotate to create an image

Nick Sheridon and his team at Xerox PARC invented Gyricon in 1974, a thin layer of transparent plastic composed of bichromal beads that rotate with changes in voltage to create an image on the surface

Sheridon sought to develop a display that could match the contrast and readability of black ink on white paper. Along with his team of engineers at Xerox, Sheridon developed Gyricon, a substrate with thousands of microscopic plastic beads—each of which were half black and half white—suspended in a thin and transparent silicon sheet. Changes in voltage polarity caused either the white or black side of the beads to rotate up and display images and text without backlighting or special ambient light conditions.

After Xerox cancelled the Alto project in the early 1980s, Sheridon took his Gyricon technology in a new direction. By the late 1980s, he was working on methods to manufacture a new digital display system as part of the “paperless office.” As Sheridon explained later, “There was a need for a paper-like electronic display—e-paper! It needed to have as many paper properties as possible, because ink on paper is the ‘perfect display.’”

In 2000, Gyricon LLC was founded as a subsidiary of Xerox to develop commercially viable e-paper products. The startup opened manufacturing facilities in Ann Arbor, Michigan and developed several products including e-signage that utilized Wi-Fi networking to remotely update messaging. Unfortunately, Xerox shut down the entity in 2005 due to financial problems.

Pioneer of e-paper Nick Sheridon

Pioneer of e-paper, Nicholas Sheridan

Among the challenges Gyricon faced were making a truly paper-like material that had sufficient contrast and resolution while keeping manufacturing costs low. Sheridan maintained that e-paper displays would only be viable economically if units were sold for less than $100 so that “nearly everyone could have one.”

As Sheridon explained in a 2009 interview: “The holy grail of e-paper will be embodied as a cylindrical tube, about 1 centimeter in diameter and 15 to 20 centimeters long, that a person can comfortably carry in his or her pocket. The tube will contain a tightly rolled sheet of e-paper that can be spooled out of a slit in the tube as a flat sheet, for reading, and stored again at the touch of a button. Information will be downloaded—there will be simple user interface—from an overhead satellite, a cell phone network, or an internal memory chip.”

E Ink

By the 1990s competitors began entering the e-paper market. E Ink, founded in 1998 by a group of scientists and engineers from MIT’s Media Lab including Russ Wilcox, developed a concept similar to Sheridon’s. Instead of using rotating beads with white and black hemispheres, E Ink introduced a method of suspending microencapsulated cells filled with both black and white particles in a thin transparent film. Electrical charges to the film caused the black or white particles to rise to the top of the microcapsules and create the appearance of a printed page.

E Ink cofounder Russ Wilcox

E Ink cofounder Russ Wilcox

E Ink’s e-paper technology was initially implemented by Sony in 2004 in the first commercially available e-reader called LIBRIe. In 2006, Motorola integrated an E Ink display in its F3 cellular phone. A year later, Amazon included E Ink’s 6-inch display in the first Amazon Kindle which became by far the most popular device of its kind.

Kindle Voyage (2014) and Kindle Paperwhite (2015) with the latest e-paper displays (Carta) from E ink

Kindle Voyage (2014) and Kindle Paperwhite (2015) with the latest e-paper displays (Carta) from E ink

Subsequent generations of Kindle devices have integrated E Ink displays with progressively improved contrast, resolution and energy consumption. By 2011, the third generation Kindle included touch screen capability (the original Kindle had an integrated hardware keyboard for input).

The current edition of the Kindle Paperwhite (3rd Generation) combines back lighting and a touch interface with E Ink Carta technology and a resolution of 300 pixels per inch. Many other e-readers such as the Barnes & Noble Nook, the Kobo, the Onyx Boox and the PocketBook also use E Ink products for their displays.

Historical parallel

The quest to replicate, as closely as possible in electronic form, the appearance of ink on paper is logical enough. In the absence of a practical and culturally established form, the new media naturally strives to emulate that which came before it. This process is reminiscent of the evolution of the first printed books. For many decades, print carried over the characteristics of the books that were hand-copied by scribes.

It is well known that Gutenberg’s “mechanized handwriting” invention (1440-50) sought to imitate the best works of the Medieval monks. The Gutenberg Bible, for instance, has two columns of print text while everything else about the volume—paper, size, ornamental drop caps, illustrations, gold leaf accents, binding, etc.—required techniques that preceded the invention of printing. Thus, the initial impact of Gutenberg’s system was an increase in the productivity of book duplication and the displacement of scribes; it would take some time for the implications of the new process to work its way through the function, form and content of books.

Ornamented title page of the Gutenberg Bible printed in 1451

Ornamented title page of the Gutenberg Bible printed in 1451

More than a half century later—following the spread of Gutenberg’s invention to the rest of Europe—the book began to evolve dramatically and take on attributes specific to printing and other changes taking place in society. For example, by the first decade of the 1500s, books were no longer stationary objects to be read in exclusive libraries and reading rooms of the privileged few. As their cost dropped, editions became more plentiful and literacy expanded, books were being read everywhere and by everybody.

By the middle 1500s, both the form and content of books became transformed. To facilitate their newfound portability, the size of books fell from the folio (14.5” x 20”) to the octavo dimension (7” x 10.5”). By the beginning of the next century, popular literature—the first European novel is widely recognized as Cervantes’ Don Quixote of 1605—supplanted verse and classic texts. New forms of print media developed such as chapbooks, broadsheets and newspapers.

Next generation e-paper

It seems clear that the dominance of LCD displays on computers, mobile and handheld devices is a factor in the persistent affinity of the public for print books. Much of the technology investment and advancement of the past decade—coming from companies such as Apple Computer—has been been committed to computer miniaturization, touch interface and mobility, not the transition from print to electronic media. While first decade e-readers have made important strides, most e-books are still being read on devices that are visually distant from print books, impeding a more substantial migration to the new media.

Additionally, most current e-paper devices have many unpaper-like characteristics such as relatively small size, inflexibility, limited bit-depth and the inability to write ton them. All current model e-paper Kindles, for example, are limited to 6-inch displays with 16 grey levels beneath a heavy and fragile layer of glass and no support for handwriting.

The Sony Digital Paper System (DPT-S1) is based on E Ink’s Mobius e-paper display technology: 13.3” format, flexible and supports stylus handwriting

The Sony Digital Paper System (DPT-S1) is based on E Ink’s Mobius e-paper display technology: 13.3” format, flexible and supports stylus handwriting

A new generation of e-paper systems is now being developed that overcome many of these limitations. In 2014, Sony released its Digital Paper System (DPT-S1) that is a letter-size e-reader and e-notebook (for $1,100 at launch and currently selling for $799). The DPT-S1 is based on E Ink’s Mobius display, a 13.3” thin film transistor (TFT) platform that is flexible and can accept handwriting from a stylus.

Since it does not have any glass, the new Sony device weighs 12.6 oz or about half of a similar LCD-based tablet. With the addition of stylus-based handwriting capability, the device functions like an electronic notepad and, meanwhile, notes can be written in the margins of e-books and other electronic documents.

These advancements and others show that e-paper is positioned for a renewed surge into things that have yet to be conceived. Once a flat surface can be curved or even folded and then made to transform itself into any image—including a color image—at any time and at very low cost and very low energy consumption, then many things are possible like e-wall paper, e-wrapping paper, e-milk cartons and e-price tags. The possibilities are enormous.

Charles Stanhope (1753–1816): Iron printing press

Posted in People in Media History, Print Media with tags , , , , , , , , , , on February 25, 2016 by multimediaman
Charles Stanhope, 3rd Earl Stanhope: August 3, 1753–December 15, 1816

Charles Stanhope, 3rd Earl Stanhope: August 3, 1753–December 15, 1816

Historians generally agree that the first industrial revolution took place between 1760 and 1840. Among the features of the great economic and social transformation were: (1) the progression from predominantly rural to urban society, (2) the replacement of handicraft with machine production, (3) the introduction of iron and steel in place of wood and (4) the substitution of muscle power with new energy sources like coal-fired steam power.

A unique set of circumstances—a stable commercial environment, advances in iron making and an abundance of skilled mechanics—made Britain the birthplace of the industrial revolution. Beginning with new techniques in textile production, industrial innovations spread rapidly to other manufacturing sectors and then across national borders in Europe and around the globe. All aspects of life would be touched by industrialization: population, politics, trade and commerce, science and culture, education, transportation and communication.

It was during this era of remarkable change that the English aristocrat Charles Stanhope invented—sometime around 1800—the first printing press constructed wholly of iron. Prior to Stanhope’s achievement, the design and build of printing machines had not changed in the three and a half centuries since Gutenberg.

Previously, small adjustments had been made to the wooden press. These related to structural stability, increased sheet size and automation to reduce human muscle power. But, even with the inclusion of some iron parts, the basic design of printing presses remained as they were in 1450.

With the Stanhope hand press, both the design of the impression mechanism as well as the material from which the machine was built were transformed; Stanhope’s contribution was a crucial preliminary step in the industrial development of print communications.

Young Lord Stanhope

Charles Stanhope, third Earl Stanhope, was born on August 3, 1753, the younger of two sons of Philip Stanhope, second Earl Stanhope, and his wife Lady Grisel (Hamilton) Stanhope. As a member of the English peerage system—with titles like Duke, Earl and Baron—Charles is often referred to as Lord Stanhope or Earl Stanhope. Born into the English aristocracy, he was afforded a privileged upbringing and, at the age of nine, was enrolled by his parents at prestigious Eton boarding school.

Portrait of the young Lord Stanhope

Portrait of the young Lord Stanhope

In 1763, following the death at age seventeen of his brother Philip from tuberculosis, Charles became family heir. His parents decided that Charles’ “health should not be exposed to the English climate, or the care of his mind to the capricious attention of the English schoolmaster” and the family relocated to Geneva, Switzerland. At age eleven, he was enrolled at the school in Geneva founded on the principles of John Calvin and there studied philosophy, science and math.

As a teenager, Charles was known to be a devoted cricket player, an exceptional equestrian and a well mannered young man who was admired by his peers. At age seventeen, Charles won a prize in a Swedish competition for the best essay, written in French, on the construction of a pendulum.

While Charles was accomplished academically in math and science, he was also known to have talents in drawing and painting. As a nobleman, Charles had obligations as a militia commander and he developed a passion for archery and musket shooting. At eighteen, he won a competition and was crowned the best shot and so-called “King of the Arquebusiers.”

By the time Charles completed his education in Switzerland, his parents decided to move the family back to England. According to a published account, as the family and its entourage left Geneva in 1774, “The young gentleman was obliged to come out again and again to his old friends and companions who pressed round the coach to bid him farewell, and expressed their sorrow for his departure and their wishes for his prosperity.”

Stanhope the inventor

During their five-month journey home to England from Switzerland, the family made a stop in Paris. Charles was welcomed and “esteemed by most of the learned educated men of the capital” over the prize he had won for his paper on pendulum design. He was developing an international reputation as an innovator.

Upon his return to England, Charles used his skills in mechanics to win election to London’s Royal Society, a world renowned club founded by King Charles in the 17th century to promote the benefits and accomplishments of science. At the age of 20, Charles embarked on a series of self-funded experiments and inventions and his interest in such matters continued throughout his life.

The first of two calculating machines invented by Charles Stanhope. His "arithmetical machines" have been recognized as precursors to the computer.

The first of two calculating machines invented by Charles Stanhope. His “arithmetical machines” have been recognized as precursors to the computer.

The most important of these were:

  • A method for preventing counterfeiting of gold currency (1775)
  • A system for fireproofing houses by starving a fire of air (1778)
  • Several mechanical “arithmetical machines” that could add, subtract, multiply and divide. These inventions were early forerunners of computers (1777 and 1780).
  • Experiments in steamboat navigation and ship construction which included the invention of the split pin, later known as the Cottier pin (1789).
  • A popular single lens microscope that became known as the Stanhope that was used in medical practice and for examination of transparent materials such as crystals and fluids (1806).
  • A monochord or a single string device, used for tuning musical instruments
  • Improvements in canal locks and inland navigation (1806)

Charles Stanhope became so well accomplished in international scientific circles that he was befriended by Benjamin Franklin. The two spent time together during Franklin’s visits to England prior to the American Revolution. They shared a mutual interest in electricity and, in 1779, Charles Stanhope published a volume entitled “Principles of Electricity” that corroborated through experimental evidence Franklin’s ideas about lighting rods.

The Stanhope press

By 1800, as has often happened in graphic arts history, the environment became ripe for a major step forward in printing methods. Charles Stanhope—who had the desire, know-how and resources to make it happen—stepped forward with a significant breakthrough.

Due to his many democratic political pursuits and scientific publishing activities—some of which concerned freedom of the press—Charles was very familiar with printing technology. Among his concerns were the cost of production, the accuracy of the content, the beauty of the print quality and the importance of books for the expansion of knowledge in society as a whole.

A drawing of the original Stanhope press design. None of these are known to exist today.

A drawing of the original Stanhope press design. None of these are known to exist today.

All letterpress technologies require a means to transfer ink from the surface of the metal type forms to the paper. This process requires the application of pressure, i.e. an impression, that mechanically drives the ink into the paper fibers. The pressure also creates a slight indentation in the shape of the letter forms in the surface of the paper.

Prior to 1800, press designs were based on the screw press that had been used for pressing grapes (wine) and olives (oil), cloth and paper going back to Roman times. The screw mechanism is a complex arrangement of the screw, nut, spindle and fixed bar that drives the platen—the flat plate that presses the paper against the type form—downward. There are many historical drawings and engravings that illustrate how physical strength is required to pull the bar and make a printing impression with the Gutenberg era press design.

Stanhope’s innovation, according to historian James Moran, was that “he retained the conventional screw but separated it from the spindle and bar, inserting a system of compound levers between them. The effect of several levers acting upon another is to multiply considerably the power applied.” The compound lever system was so successful that it became referred to as “Stanhope principles” and was incorporated into subsequent generations of hand press design in the nineteenth century (Columbian, Albion and Washington).

The second and more common design of the Stanhope hand press. Note the separation of the lever system from the screw and platen mechanism.

The second and more common design of the Stanhope hand press. Note the separation of the lever system from the screw and platen mechanism.

Other important Stanhope press changes were:

  • All iron construction including a massive frame formed in one piece
  • A double size platen
  • A regulator that controlled the intensity of the impression

The Stanhope press would undergo several important modifications, the most important of which was strengthening the frame in 1806 to prevent the iron from cracking under the stress of repeated impressions. The second design—with its characteristic rounded cheeks—is what today is commonly associated with the Stanhope press.

The Times of London immediately adopted the Stanhope press and it became successful across Europe and America in the first few decades of the 1800s. Meanwhile, further developments with all-iron hand presses would continue up to the end of the nineteenth century. However, driven by the rapid advancement of the industrial revolution, the next stage in the evolution of press design—the introduction of cylinders and steam power—would rapidly eclipse Stanhope’s accomplishments.

Stanhope the statesmen

Charles 3rd Earl Stanhope was an unusual man. In addition to his many inventions and scientific studies, he devoted himself to radical political causes that often controverted his aristocratic background. He often referred to himself as “Citizen” Stanhope. The origins of his democratic leanings were to be found in the influence of his father—who was a member of Parliament and an outspoken critic of the crown and proponent of Habeas Corpus—his education in the radical environment of Geneva and the Revolutions in America (1776) and France (1789).

Known publicly as Viscount Mahon at the time, Charles was elected to Parliament in 1780 and adopted positions that conflicted with the political elite. His demands for electoral and finance reform and religious tolerance of dissenters and Catholics did not sit well with the establishment. Charles was also known to have campaigned against slavery and was party to the abolition bill known as the Slave Trade Act of 1807.

Stanhope estate at Chevening, Kent. Charles died here on December 15, 1816.

Stanhope estate at Chevening, Kent. Charles died here on December 15, 1816.

Charles Stanhope was an opponent of the war against the thirteen colonies and a supporter of John Wilkes, a British sympathizer of the American rebels. Despite his efforts on behalf of the oppressed and downtrodden in society, Charles Stanhope’s personal eccentricities caused him, especially later in life, to be isolated from his family.

Always thinking of others before himself, he allowed his manse at Chevening, Kent to fall into disrepair and it is speculated that he had starved himself to death on a diet of soup and barley water. Charles Stanhope was interred “as a very poor man” in the family vault at Chevening Church one week after his death on December 15, 1816.

Adrian Frutiger (1928–2015): Univers and OCR-B

Posted in People in Media History, Phototypesetting, Print Media, Typography with tags , , , , , , , , , , , , , , , , , , , , , , on December 21, 2015 by multimediaman
Adrian Frutiger: May 24, 1928 – September 10, 2015

Adrian Frutiger: May 24, 1928 – September 10, 2015

Adrian Frutiger died on September 10, 2015 at the age of 87. He was one of the most important type designers of his generation, having created some 40 fonts, many of them still widely used today. He was also a teacher, author and specialist in the language of graphic expression and—since his career spanned metal, photomechanical and electronic type technologies—Frutiger became an important figure in the transition from the analog to the digital eras of print communications.

Frutiger was born on May 24, 1928 in the town of Interseen, near Interlaken and about 60 kilometers southeast of the city of Bern, Switzerland. His father was a weaver. As a youth, Adrian showed an interest in handwriting and lettering. He was encouraged by his family and secondary school teachers to pursue an apprenticeship rather than a fine arts career.

Adrian Frutiger around the time of his apprenticeship

Adrian Frutiger around the time of his apprenticeship

At age 16, Adrian obtained a four-year apprenticeship as a metal type compositor with the printer Otto Schlaeffli in Interlaken. He also took classes in drawing and woodcuts at a business school in the vicinity of Bern. In 1949, Frutiger transferred to the School of Applied Arts in Zürich, where he concentrated on calligraphy. In 1951, he created a brochure for his dissertation entitled, “The Development of the Latin Alphabet” that was illustrated with his own woodcuts.

It was during his years in Zürich that Adrian worked on sketches for what would later become the typeface Univers, one of the most important contributions to post-war type design. In 1952, following his graduation, Frutiger moved to Paris and joined the foundry Deberny & Peignot as a type designer.

During his early work with the French type house, Frutiger was engaged in the conversion of existing metal type designs for the newly emerging phototypesetting technologies. He also designed several new typefaces— Président, Méridien, and Ondine—in the early 1950s.

San serif and Swiss typography

San serif type is a product of the twentieth century. Also known as grotesque (or grotesk), san serif fonts emerged with commercial advertising, especially signage. The original san serif designs (beginning in 1898) possessed qualities—lack of lower case letters, lack of italics, the inclusion of condensed or extended widths and equivalent cap and ascender heights—that seemingly violated the rules of typographic tradition. As such, these early san serif designs were often considered too clumsy and inelegant for the professional type houses and their clients.

Rudolf Koch, Kabel, 1927

Rudolf Koch, Kabel, 1927

Paul Renner, Futura, 1927

Paul Renner, Futura, 1927

Eric Gill, Gill Sans, 1927

Eric Gill, Gill Sans, 1927

Along with the modern art and design movements of the early twentieth century, a reconsideration of the largely experimental work of the first generation of sans serif types began in the 1920s. Fonts such as Futura, Kabel and Gill Sans incorporated some of the theoretical concepts of the Bauhaus and DeStijl movements and pushed sans serif to new spheres of respectability.

However, these fonts—which are still used today—did not succeed in elevating san serif beyond headline usage and banner advertising and into broader application. Sans serif type remained something of an oddity and not yet accepted by the traditional foundry industry as viable in terms of either style or legibility.

In the 1930s, especially within the European countries that fell to dictatorship prior to and during World War II, there was a backlash against modernist conceptions. Sans serif type came under attack, was derided as “degenerate” and banned in some instances. Exceptions to this trend were in the US, where the use of grotesque types was increasing, and Switzerland, where the minimalist typographic ideas of the Bauhaus were brought by designers who had fled the countries ruled by the Nazis.

The Bauhaus School, founded in 1919 in Weimar, Germany, was dedicated to the expansion of the modernist esthetic

The Bauhaus School, founded in 1919 in Weimar, Germany, was dedicated to the expansion of the modernist esthetic

After the war, interest in sans serif type design was renewed as a symbol of modernism and a break from the first four decades of the century. By the late 1950s, the most successful period of san serif type opened up and the epicenter of this change emerged in Switzerland, signified by the creation of Helvetica (1957) by Eduard Hoffmann and Max Miedinger of the Haas Type Foundry in Münchenstein.

It was the nexus of the creative drive to design the definitively “modern” typeface and the possibilities opened up by the displacement of metal type with phototypesetting that brought san serif from a niche font into global preeminence.

Frutiger’s Univers

This was the cultural environment that influenced Adrian Frutiger as he set about his work on a new typeface as a Swiss trained type designer at a French foundry. As Frutiger explained in a 1999 interview with Eye Magazine, “When I came to Deberny & Peignot in Paris, Futura (though it was called Europe there) was the most important font in lead typesetting. Then one day the question was raised of a grotesque for the Lumitype-Photon [the first phototypesetting system]. …

“I asked him [Peignot] if I might offer an alternative. And within ten days I constructed an entire font system. When I was with Käch I had already designed a thin, normal, semi-bold and italic Grotesque with modulated stroke weights. This was the precursor of Univers. … When Peignot saw it he almost jumped in the air: ‘Good heavens, Adrian, that’s the future!’ ”

An early diagram of Frutiger’s Univers in 1955 shows the original name “Monde”

An early diagram of Frutiger’s Univers in 1955 shows the original name “Monde”

Final diagram of Frutiger’s 21 styles of Univers in 1955

Final diagram of Frutiger’s 21 styles of Univers in 1955

Originally calling his type design “Monde” (French for “world”), Frutiger’s innovation was that he designed 21 variations of Univers from the beginning; for the first time in the history of typography a complete set of typefaces were planned precisely as a coherent system. He also gave the styles and weights a numbering scheme beginning with Univers 55. The different weights (extended, condensed, ultra condensed, etc.) were numbered in increments of ten, i.e. 45, 65, 75, 85 and styles with the same line thickness were numbered in single digit increments (italics were the even numbers), i.e. 53, 56, 57, 58, 59, etc.

Univers was released by Deberny & Peignot in 1957 and it was quickly embraced internationally for both text and display type purposes. Throughout the 1960s and 70s, like Helvetica, it was widely used for corporate identity (GE, Lufthansa, Deutsche Bank). It was the official promotional font of the 1972 Munich Olympic Games.

Frutiger explained the significance of his creation in the interview with Eye Magazine, “It happened to be the time when the big advertising agencies were being set up, they set their heart on having this diverse system. This is how the big bang occurred and Univers conquered the world. But I don’t want to claim the glory. It was simply the time, the surroundings, the country, the invention, the postwar period and my studies during the war. Everything led towards it. It could not have happened any other way.”

Computers and digital typography

Had Adrian Frutiger retired at the age of 29 after designing Univers, he would have already made an indelible contribution to the evolution of typography. However, his work was by no means complete. By 1962, Frutiger had established his own graphic design studio with Bruno Pfaffli and Andre Gurtler in Arcueil near Paris. This firm designed posters, catalogs and identity systems for major museums and corporations in France.

Throughout the 1960s, Frutiger continued to design new typefaces for the phototypesetting industry such as Lumitype, Monotype, Linotype and Stempel AG. Among his most well-known later san serif designs were Frutiger, Serifa and Avenir. Frutiger’s font systems can be seen to this day on the signage at Orly and Charles de Gaulle airports and the Paris Metro.

The penetration of computers and information systems into the printing and publishing process were well underway by the 1960s. In 1961, thirteen computer and typewriter manufacturers founded the European Computer Manufacturers Association (ECMA) based in Geneva. A top priority of the EMCA was to create an international standard for optical character recognition (OCR)—a system for capturing the image of printed information and numbers and converting them into electronic data—especially for the banking industry.

By 1968, OCR-A was developed in the US by American Type Founders—a trust of 23 American type foundries—and it was later adopted by the American National Standards Institute. This was the first practically adopted standard mono-spaced font that could be read by both machines and the human optical system.

However, in Europe the ECMA wanted a font that could be used as an international standard such that it accommodated the requirements of all typographic considerations and computerized scanning technologies all over the world. Among the issues, for example, were the treatment of the British pound symbol (£) and the Dutch IJ and French oe (œ) ligatures. Other technical considerations included the ability to integrate OCR standards with typewriter and letterpress fonts in addition to the latest phototypesetting systems.

Comparison of OCR-A (1968) with Frutiger’s OCR-B (1973)

Comparison of OCR-A (1968) with Frutiger’s OCR-B (1973)

In 1963, Adrian Frutiger was approached by representatives of the ECMA and asked to design OCR-B as an international standard with a non-stylized alphabet that was also esthetically pleasing to the human eye. Over the next five years, Frutiger showed the exceptional ability to learn the complicated technical requirements of the engineers: the grid systems of the different readers, the strict spacing requirements between characters and the special shapes needed to make one letter or number optically distinguishable from another.

In 1973, after multiple revisions and extensive testing, Adrian Frutiger’s OCR-B was adopted as an international standard. Today, the font can be most commonly found on UPC barcodes, ISBN barcodes, government issued ID cards and passports. Frutiger’s OCR-B font will no doubt live on into the distant future—alongside various 2D barcode systems—as one of the primary means of translating analog information into digital data and back again.

Frutigers Sign and Symbols 1989

Frutiger’s 1989 English translation of “Signs and Symbols: Their Design and Meaning”

Adrian Frutiger’s type design career extended well into the era of desktop publishing, PostScript fonts and the Internet age. In 1989, Frutiger published the English translation of Signs and Symbols: Their Design and Meaning a theoretical and retrospective study of the two-dimensional expression of graphic drawing with typography among its most advanced forms. For someone who spent his life working on the nearly imperceptible detail of type and graphic design, Frutiger exhibited an exceptional grasp of the historical and social sources of man’s urge toward pictographic representation and communication.

As an example, Frutiger wrote in the introduction to his book, “For twentieth century humans, it is difficult to imagine a void, a chaos, because they have learned that a kind of order appears to prevail in both the infinitely small and the infinitely large.  The understanding that there is no element of chance around or in us, but that all things, both mind and matter, follow an ordered pattern, supports the argument that even the simplest blot or scribble cannot exist by pure chance or without significance, but rather that the viewer does not clearly recognize the causes, origins, and occasion of such a ‘drawing’.”